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X-ray diffuse-scattering experiments at 295 and 218 K on adamantane crystals, grown by annealing, show 
that its space group is F43m, and that it is not orientationally disordered. A re-analysis of previous X-ray 
Bragg-scattering data shows that the conclusion of Fm3m, with orientational disorder, for sublimation-grown 
crystals is not statistically significant. The Bragg intensities are much less sensitive to orientational disorder 
than the diffuse scattering. The diffuse scattering shows short-range correlation effects interpretable as pairs 
of neighbouring molecules tending to adopt local configurations characteristic of the low-temperature 
P42 ]c phase, i.e. symmetry breaking in F43m. 

1. Introduction 2. Previous X-ray diffraction work 

Many organic crystals appear to have a phase tran- 
sition from a low-temperature ordered phase to a 
high-temperature phase in which the molecules are 
orientationally disordered ('plastic') (Aston, 1963). The 
high molecular and crystal symmetry of adamantane 
has made it the subject of many theoretical and 
experimental studies, listed in Reynolds (1975a) and 
Pertsin & Kitaigorodsky (1976). Most studies assume 
that the high-temperature cubic phase of adamantane 
is orientationally disordered, that is with equal popula- 
tions in the two molecular orientations which are 
related by inversion. The only evidence for this derives 
from X-ray diffraction (Nordman & Schmitkons, 
1965). 

In the next section we will summarize the results 
of the previous work. After developing a simple theory 
for the diffuse scattering in adamantane we will present 
our experiments on its X-ray diffuse scattering. These 
will be fitted to the model to show that a high- 
temperature cubic phase of adamantane is orientation- 
ally ordered. Lastly we will discuss, and reinterpret, 
the X-ray Bragg-scattering results of Nordman & 
Schmitkons (1965) (hereinafter N & S) to show that 
they do not necessarily imply a disordered phase. 

Photographic data have been taken by N & S on 
both the low-temperature phase (P5421c, tetragonal, 
a = 6.60 c = 8.81 A at 160 K) and the high-tempera- 
ture phase (F43m, cubic, a -- 9.45 /~ at 295 K) of 
adamantane. After a subsequent re-refinement of the 
low-temperature data by Donohue & Goodman 
(1966), all three space groups were found to give 
molecules with the same undistorted 43m symmetry, 
in which a reasonable fit is obtained by the use of a 
single isotropic temperature factor. In the high- 
temperature cubic phase, introduction of a rigid-body 
translational and a rigid-body librational thermal factor 
further improves the fit. The three structures (low- 
temperature and two alternative high-temperature) are 
closely related. This is illustrated schematically in 
Fig. 1. The F43m structure can be obtained from the 
Fm3m by ordering all the molecules to a similar 
orientation. P42~c can be obtained from Fm3m by 
ordering all the molecules' orientations in alternating 
ab layers. The molecular orientations in neighbouring 
ab layers are related by inversion. A subsequent 9 ° 
twist around [001 ], alternating in sign for neighbouring 
ab layers, and a small tetragonal cell distortion, give the 
observed P42~c structure. N & S concluded, on the 
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Fig. 1. The three postulated structures of adamantane (a) P212tc, (b) Fm3m, (c) F;~3m. The molecule is represented as a tetrahedron. 
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basis of an analysis which we will discuss later, that 
the cubic phase is disordered, Fm3m. 

Moore & Lang (1973) have published a note on the 
X-ray diffuse scattering from adamantane concluding, 
without giving any numerical results, that the cubic 
phase is disordered, Fm3m. As we shall see, apart from 
a_(large) intensity scaling factor, both Fm3m and 
F43m give similar diffuse scattering, differing in detail 
rather than broad features. Use of polychromatic 
radiation, short exposure times (Moore, 1975, private 
communication) and crystals with large, irregular, 
mosaic spreads could obscure these differences. 

where 

and 

Fs(q) = YxYxYz (7) 

Yx = [1 -- 2(S l - S J  cos ZCqx + (S 1 - Soo)2] -1. 
(8) 

We can approximate the one-phonon contribution from 
the translations and librations by_taking the I QI 2 
dependent term in the relation I = IFI 2 - IF 2 I, where 
the averages are taken over the thermal motion. 

This gives 

3. A simple theory of X-ray scattering in adamantane 

We define the space Fourier transform of the molecular 
electron density as Fo(Q), with real and imaginary 
parts A0(A ) and Bo(Q). 0 represents the rotation of 
the molecule's twofold axes away from the unit-cell 
axes. Q is the total wavevector transfer, q the position 
within a Brillouin zone and h labels the Brillouin zone 
centre (or Bragg point). Thus 

Q = h + q .  (1) 

We introduce an order parameter St.re,n, defined 
in the usual way as [2Pt.m,, , - 1].Pt,m." , is the probability 
that the molecule separated by a translation [l,m,n] 
from the reference molecule has the same orientation. 
For l,m, n = oo, St,,,,, is the long-range order parameter 
(Soo). For F43m Soo = 1; and for Fm3m Soo = 0. We 
will label the nearest-neighbour short-range-order 
parameter S_~.½, 0 as S r We will approximate all the 
aim', a s  

Si,m, n ----- Soo + ( S  1 - Soo) n+m+l. (2) 

We assume that the crystal vibrations, and the 
order--disorder between the two positions ('0' and '90'), 
are mutually independent. We can write the total 
scattering (/) as a Bragg component (IB) plus diffuse 
intensity arising from the order-disorder (IDs), and 
vibrations (IDv) (Zachariasen, 1945). 

I = I B +/DS + /DV" (3) 

We have neglected the Compton scattering and any 
background scattering. 

If we assume that the translations and librations 
both contribute to an isotropic thermal factor (fl) we 
can write 

2 2 I B = [A2(Q) + SooBo(Q)] exp(-fllQI2)c~(Q - h). (4) 

The order-disorder component is simplified since in 
this molecule 

F90(Q) = Ao(Q) -- iB0(Q) (5) 

and (2) allows a summation to be made, reflecting the 
short-range order, to a function Fs(q) (Flack, 1970). 

IDS = (1 -- Soo)2B2(Q)Fs(q)exp(-flIQI2) (6) 

IDV = Fo(Q)F~(Q)fl IQIEFv(q) exp(-fllQ 12) (9) 

where Fv(q) is an arbitrary function introduced to take 
some account of the dispersion of an 'average' phonon. 
For undispersed phonons Fv(q) = 1. We would expect 
this formula to fail badly near q = 0, at allowed Bragg 
reflections, because of the acoustic phonons. Multi- 
phonon scattering becomes important when fll Q I 2 > 1. 
For the librational component the dynamical structure 
factor is simplified if we regard the librational amplitude 
as small. Then we can put F g F0(Q). We must further 
assume an isotropic thermal factor resulting from the 
librations, which is a more drastic approximation than 
for the translations. 

We can now model the experimental X-ray intensity 
of the cubic phase of adamantane. We must assume 
a molecular geometry and then fit six parameters, 
fl, Fv(q), Fs(q), S~ ,  S~, and a normalizing factor. 
From the Bragg scattering we can in principle obtain 
the thermal factor fl and S~, the long-range-order 
parameter, fl is well determined by a rigid-body 
refinement, but Soo is not. This is because for adaman- 
tane Ao(Q) > Bo(Q); or qualitatively, for this globular 
molecule, the scattering is relatively insensitive to the 
molecular orientation. 

However, in the diffuse scattering, Soo is determinable 
if lOS > IDV" This will occur if B~(Q) > A2(Q)fllQI 2. 
Since fl is small, at low angles of scattering (low Q) 
this can be ensured. Soo is much more easily determined 
from the diffuse scattering than the Bragg scattering. 
The accuracy of the other quantities Fu(q) and S~ will 
be lower since the approximations involved in deriving 
IDV are more drastic than those used in deriving IDS" 
Use of a more accurate model for the phonon scattering 
(see, for example, Weulersse, 1970) would involve 
many more parameters. 

At those points where Bs(Q) is large Ao(Q) is also 
large, so we expect large phonon diffuse scattering in 
precisely those regions where any order-disorder 
scattering is expected to be manifest. Thus, to extract 
Soo one must measure relative intensities either of 
Bragg-to-diffuse, or of diffuse-to-diffuse at very 
different IQl's. The intensity of order-disorder 
scattering will also be expected to be less sensitive 
to temperature than the phonon scattering. 
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4. Experimental 

To measure the X-ray diffuse scattering from adaman- 
tane it is necessary to have a large crystal with a 
volume of several times 0-1 mm 3. This ensures that the 
background from air scattering is not too large. It is 
also necessary to enclose the crystal, to prevent 
sublimation losses, in a material which must not itself 
scatter significantly more than the air in the beam. 
Adamantane crystals are extremely plastic and 
susceptible to mechanical damage. Our crystals were 
grown by sealing adamantane powder (Aldrich, gold 
label, 99+%), purified by resublimation, in 0-8 mm 
diameter Lindemann-glass tubes, with walls of thick- 
ness ~0.02 mm. These tubes were annealed for 4 d at 
a temperature of approximately 510 K. The results 
were clear cylindrical crystals of 0-8 mm diameter. 
The crystal mosaic spread was typically less than 1.5 o 
about any axis perpendicular to the tube axis. The 
mosaic spread around the tube axis was larger. The 
best crystal had a mosaic spread (full width a t - ~  
maximum) of 6 ° , with no apparent structure within it. 
There were no noticeable sublimation losses in six 
months. 

The diffuse scattering was measured with Cu Ka 
radiation (Philips generator 40kV,  20m A)  mono- 
chromated by reflection from a graphite crystal. We 
used a standard Stoe Weissenberg camera with 
modified beam stop. 

The crystal was face-centred cubic with unit-cell 

length a = 9.43 + 0.03 /~,. This agrees with previous 
values of 9.54 (Giacomello & Illuminati, 1945), 
9.426 +_ 0.008 (Nowacki, 1945) and 9.45 (N & S). 

The intensities of the Bragg peaks were measured 
visually from a 180 ° rotation photograph about [001] 
(Fig. 2). Rotation automatically integrates, approxi- 
mately, over the large mosaic spread around the tube 
axis. At the end of the diffuse-scattering measure- 
ments, rotation photographs were made at 300, 170 
and 300 K successively, with a Stoe low-temperature 
attachment used to observe the phase change to the 
low-temperature P42~c phase. The diffuse scattering 
was sampled by use of Lane photographs with up to 
4 h exposure at 295 and 218 K (Fig. 3). There were 
eight intense lobes at 2.2, 2.2, 2.2 with six less 
intense maxima at 550. There appears to be more 
detailed structure. This was examined at 295 K by 
taking Weissenberg photographs of hk½, hk½, hk[ 
(Figs. 4, 5). Maximum resolution consistent with the 
crystal size was obtained by using 0.8 mm separation 
between the screens. 48 h exposures were taken. 
Intensities were measured with a Joyce--Loebl micro- 
densitometer. 

5. Discussion and fit of  diffuse scattering data 

(a) Qualitative features 
The eight intense lobes of diffuse scattering near the 

symmetry-related points 2.2, 2.2, 2.2 correspond 

Fig. 2. Adamantane, 180 ° rotation photograph about [001 ]. 
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big. 3. Adamantane, Laue photograph, 1010J parallel to incoming beam, 1001 vertical. 

Fig. 4. Adamantane, Weissenber~; photograph of hk~ layer. 

Fig. 5. Adamantane, Weissenberg photograph or hk~ layer. 
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with points at which both the real [A0(Q)] and imagin- 
ary [B0(Q)] parts of the Fourier transform of the 
molecular electron density are at their maximum 
values. Similarly, near the points 550 there are also 
maxima in both A0(Q) and Bo(Q) corresponding to 
intense X-ray diffuse scattering. A cursory inspection 
is therefore unable to distinguish between F43m (in 
which the observed scattering, Io, is proportional to 
I QIEA2(Q) and Fm3rn [where I o oc B~(Q)]. The Laue 
photographs showed that, in the most intense lobes at 
2.2, 2.2, 2.2, the intensity was modulated such that 
intensities near the Brillouin zone centres [q = (000)] 
were greater than at q - (~-~), (00-~) or (~0). This 
'heaping up' of diffuse intensity occurred at all the 
Bragg points including those where the Bragg scattering 
was forbidden in this F-centred lattice. We note that 
extra scattering, due to acoustic modes, was not 
obviously present even near Bragg points with strong 
Bragg scattering for Iql > 0.1. In the Weissenberg 
photographs (Fig. 4) the diffuse intensity is modulated 
into festoons along [hh0], such that the intensity along 
[hh0] varies slowly while that along [hh0] varies more 
quickly. We note, however, that the effect of  the 6 ° 
mosaic spread about the tube (=rotation) axis is to 
smear any possible short-range intensity modulation 
along these festoons. The effect of the mosaic spread 
on the experimental resolution is least along [hh0]. 
By measurement along this direction we may obtain 
an approximate measure of [Fn(OO~)/Fn(~2~)], where 
n depends on the mechanism by which the intensity 
arises (vibrations or disorder). 

(b) Intensity of  diffuse scattering relative to Bragg 
scattering 

We measured the intensity of the diffuse scattering 
at 2, 2, 2.5, where it is almost at its most intense, 
relative to the weak Bragg peaks 048, 068, 026, 137, 
226 and 244. The resolution function was such that 
~0~0 of the Brillouin zone volume was covered by a 
Bragg spot. We assume values of fl = 0.022, derived 
from N & S's refinement of  the Bragg scattering. 
The structure factor of  024 (FoE 4 ~ 1.4) varies little 
between experiment and either of the refinements in 
F43m and Fm3m. We therefore use this reflection to 
obtain values of the structure factors at other places. 
We obtain (N & S's values in brackets) F222~ = 3"9 + 
1"0. F048 = 0-5 + 0"15 (<0"93), F068 = 0"3 + 
0"1 (<0.61),F026 = 1-1 _+ 0"3 (0" 65), F137 < 0.6 F226 = 
0"7 + 0.2 (0"60), F24 a = 1.9 + 0"3 (0.63). We will 
discuss the Bragg intensities in a subsequent section 
together with those of N & S. Having obtained an 
absolute value of the structure factor of the diffuse 
scattering at 2,2,2½ we may use (6) and (9) to obtain 
a value of (1 - S~)2Fs(O0~), a measure of the long- 
range order. We will assume Fv(00~) = 1. We obtain 
(1 -- SJ2Fs(O0~) = --~0.n~+0.17 Most of the uncer- " " - 0 . 1 2 '  
tainty arises from the resolution correction used to 

obtain F2,2,2.~; very little arises from the assumption 
made for F r Since it must be positive, we can say 
( 1  - S~)2Fs(O0~) is less than 0.12 with a preferred 
value of 0. For the F43m structure we expect a value 
of 0; and for Fm3m of slighly less than 1. If  
(1 -- SJEFs(O0~) were unity this would raise the 
observed diffuse intensity by a factor of  four relative to 
the Bragg peaks. This illustrates the sensitivity of the 
diffuse scattering to the disorder. 

(c) Relative intensities of diffuse scattering at 295 K 

We can exploit the different I QI dependence of  
disorder and one-phonon scattering to obtain another, 
independent, estimate of (1 - S~)2Fs(q). We have 
measured the diffuse intensity (Io) for integral and half- 
integral values of n, along Inn½] and [nn~]. To minimize 
interference from multiphonon scattering we have 
neglected points with fll Q I 2 > 1. 

Consideration of (6) and (9) shows that we may  
hope to extract from these intensities, besides a nor- 
malizing constant, (1 - S_oo)2Fs(nn½) and flFv(nn½). The 
fits to the data of an F43m and an Fm3m model are 
shown in Table 1. The relative R factors (R = Y_,I(I o -- 
I c) I/E Io) are 0.16 for the F~13m and 0.31 for the Fm3m 
structures. The best fit, measured by R, is near the 
F43m structure with (1 - S~)2Fs(O~) = (1 - 

Table 1. Observed and calculated diffuse scattering 
R(F43m) is a normalized ratio of calculated diffuse scattering 

intensity to (In - 1); we have assumed a fiat, unit background. 

2 2  
2} 2½ 
3 3 
3½ 3½ 
4 4  
4½4½ 
5 5 
5½5½ 
6 6 
6½ 6½ 
7 7 
7½ 7½ 
8 8  
½ ½2½ 

l 12½ 
1½ l½2½ 
2 2 2 ½  
2½2½2½ 
3 3  2½ 
3½3½3½ 
4 4 2 ½  
4 ½ 4 ½ 2 ½  

552½ 
5½5½2½ 
6 6 2 ½  

I o R (F43m) R (Fm3m) 

4.8 0.692 1.24 
4.6 0.866 0.848 
4.9 0.601 0-375 
2.4 0.182 0-213 
2.6 0.812 0.567 
3.5 1.37 0.755 
8.0 0.681 0.400 
4.4 1.07 0.583 
3.3 0.690 0.515 
1.2 * * 
1.8 * * 

3.3 * * 
4.8 * * 
4.4 1.123 1-27 
7.0 1.02 2.13 

10.1 1.021 2-18 
11.6 2.46 2.09 
11.7 1.364 1.15 
13.0 1-05 0.70 
5.8 * * 
2.8 * * 
1.4 * * 
1.8 * * 

1.3 * * 
0.8 * * 

* Intensity neglected in the fit because of appreciable multiphonon 
scattering. 



P. A. REYNOLDS 247 

Soo)2Fs(~z) = 0.03 + 0.05 and Fv(~)/Fv(O0! z) = 0.6 + 
0.2. A better statistical analysis is not warranted because 
of the serious approximations made in deriving the 
phonon scattering. The values of (1 - Soo)V's(nn 9 are 
so well determined because at low I QI2's the lack of 
disorder intensity is very marked. At much higher I QI 2, 
when fll QI 2 > 1, the observed intensity is much larger 
than that calculated - presumably because of the 
effects of extra multiphonon scattering (proportional to 
I Q I 4 and higher powers). 

To determine the values of the long-range-order 
parameter (S~)  and the nearest-neighbour-order 
parameter (S~) separately, more information is needed. 
We can, however, place some limits on the allowed 
values of S~ and Soo, since 0 < Soo < 1 and S~ > Soo. 
This gives S, > 0-7 and Soo > 0.7. These limits are 
compatible with the observation Io(Iql > 0.1) < 
Io(2.2,2.2,2.2) which itself provides an estimate of S~. 
Any diffuse intensity associated with disorder, if it 
exists significantly, has a f.w.h.m, of less than 0.2 in the 
Brillouin zone. This, with (7) and (8), gives 0.85 < S~ < 
1.0, and therefore Soo > 0.85. 

(d) Temperature dependence of diffuse scattering 
The Laue photographs taken at 218 K, 10 K above 

the phase-transition temperature of 208 K, are 
qualitatively very similar to those at 295 K. Analysis of 
some intensities at symmetry points around 222 
showed that the scattering remains interpretable in 
terms of one-phonon scattering with no contribution 
from disorder (IDs = 0). We obtain fl at 218 K of 0.017 
compared with 0.022 at room temperature. This 25% 
decrease in diffuse scattering intensity, relative to Bragg 
scattering, contrasts with the very slight increase in 
intensity expected from disorder scattering due to a 
decreased Debye-Waller  factor. From the Laue 
photographs we measure rv(~)/Fv(O0~) of 0 .70 +_ 
0.10 at 295 and 0.65 + 0.10 at 218K.  This 
corresponds to the value obtained from the Weissen- 
berg photographs. 

6 .  B r a g g - s c a t t e r i n g  d a t a  

Examination of the total intensity within about 0.1 of 
the allowed Bragg points, which is our resolution, and 
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presumably that of N & S too, will allow us to test 
if the molecules are indeed in ordered clusters of at 
least 300 molecules (which we will idealize to F2~3m) 
rather than locally disordered (Fm3m). The cluster size 
arises because if S~ > 0.85 then the diffuse intensity 
will be included under the Bragg peak at our resolution. 
N & S obtained intensities from 39 independent 
reflections to which they fitted both F543m and Fm3m 
models (five variable parameters: scale factor, two car- 
bon coordinates, two thermal parameters). The structure 
was refined with unweighted structure factors (oJ/= 1). 
They obtained weighted R factors (Hamilton, 1969), 
g = [E/ooi(IFo~l - -  IFiclE/~2iogilFiol2]u2, of 0.168 for 
the F43m structure and 0.097 for the disordered 
Fm3m structure. The ratio of R factors is highly 
significant providing that o9~ = 1 reflects the true 
inverse of the variances of the observations. This 
may be tested in two ways. Firstly, we have an experi- 
mental estimate of the variances by use of our inde- 
pendently derived structure factors. Secondly, the 
residual errors, Ai = (IFi(obs)l - IFi(calc)l)ogy z, must 
be normally distributed. If this is so, and if the two 
models are adequate for modelling an exact set of data 
to a far greater accuracy than our observed errors, 
then we may assign significance to R-factor ratios 
(Hamilton, 1969). 

In fact, normal probability plots of A/with 09~ = 1 
(Fig. 6a,b) show markedly curved plots with slopes 
very far from unity. We can therefore place no reliance 
on the observed R-factor ratio. It is well known that 
unweighted data is inadequate, so we have used the 
weighting scheme of Hughes (1941) and reoptimized 
the data. We put o9i = 16 if Fi(obs) < 2 and o9i = 
64/F2(obs) if Fi(obs) > 2. The probability plots 
obtained are shown in Fig. 6(c) and (d). These show 
a relatively straight line for F543m but still a curved line 
for Fm3m. The respective R values are 0.29 and 
0.17. Again, because of plot curvature we can make 
no reasonable choice between the data. This weighting 
scheme implies a variance of F2/64 in the observed 
stronger structure factors, i.e. an accuracy of intensity 
measurement of about 25%. In a structure factor of ~ 1 
the accuracy implied is greater. One would therefore 
expect an R'  factor defined as 

1I E{ogi[ IFi(obs~il~_/( ° b s l ) l  - IFi(obsi_~ ~- 2)1 ]2} 111/2 
to be about 0.25. This means that refinement past an 
R value of about 0.25 is meaningless. The differences 
in the R values of FSq3m and Fm3m seem to arise 
solely because of the chance distribution of measured 
intensities. We can see that our estimated variances are 
of the right order by comparing N & S's data and 
ours, for the independently measured structure factors 
(§ 5b). The discrepancy is even larger than R'  ~ 0-25 
would imply since we have measured precisely those 
intensities calculated to be most different in Fm3m and 
F43m models. 

N & S used a second argument for the Fm3m 

structure. From 
differs from the 
Soo then 

Fo 
Fc(43m) - 

the phase angle, 

(4) we can see that if our F543m model 
correct structure only by a change in 

[ A~ca'c(Q) + S~B~ca'c(Q) ] 

A~calc(Q) + Bgca'c(Q) 

a,  is given by 

1/2 

(10) 

[ COS tq [ 2 2calc 2calc = A  o (Q)/[A 0 (Q) + B2ca'c(Q)]. (11) 

Therefore, 

F° _ [cos 2 a + S~(1 - I cos a 12)] in. (12) 
Fc(43m) 

If we plot Fo/Fc(2~3m) versus I cos a l we can fit a value 
for S~o directly. N & S data give a least-squares value 
of Soo = 0.6 + 0.4 for the unweighted data and 
Soo = 0.8 + 0.4 for the weighted data. Addition of our 
measured structure factors to N & S's set increases 
Soo still further towards unity. This method of obtaining 
Soo reveals a preference for Soo = 1 rather than 0, 
but there is little significance in the choice because of  
the large errors. This underlines the inadequacy of 
Bragg data, measured at this accuracy, in distinguish- 
ing between Fm3m and F2~3m structures. The measured 
Bragg scattering, because of the experimental finite 
resolution does not of course really reveal Soo, since 
some diffuse intensity is included under the Bragg peak, 
but an integral of Soo and Fs(q), as do our diffuse 
scattering measurements. 

7. Discussion 

(a) Long-range order in molecular orientations 
differing by 90 ° 

We will discuss the long-range order (S~)  in terms 
of infinite crystals of a disordered Fm3m (S~ = O) and 
an ordered F43m structure (S~ = 1). From our diffuse 
scattering measurements of the relative intensity of 
diffuse and Bragg peaks, the distribution of diffuse 
intensity and its temperature dependence we find a 
minimum value for S~  of 0.7. The value of this 
minimum arises from the assumed structure of the 
short-range ordering (equation 2). Within this theoreti- 
cal framework it is not possible to fit our results to 
long-range disorder (S~ = O) compensated by much 
higher short-range order (S~). Even were it so the value 
of S~ (>0.85)  implies ordered clusters of at least 
300 molecules [~(1 - S~)-3]. These large clusters in 
an Fm3m structure could only be distinguished from 
an infinite F:~3m crystal by examining, at higher 
resolution, the width of the Bragg peak. For small 
crystallites of FSq3m, of the order of the cluster size, 
this distinction between the two alternatives disappears. 
In the previous section we have shown that the Bragg 
scattering data of N & S is incapable of distinguishing 
between the two extreme alternatives (S~ = 1, S~ = 1 
and S~  = 0, S~ = 0). 
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The _crystals grown by annealing transform to the 
same P421c structure observed on cooling sublimation- 
grown crystals, and re-attain the ordered FS~3m 
structure on warming. It is not impossible that sublima- 
tion-grown crystals are of Fm3m long-range symmetry. 
Cases are known, e.g. COla, of production of recta- 
stable phases by different crystal-growth techniques 
(Badiali, Bruneaux-Poulle & Defrain, 1976). The 
reversibility of the F43m to P42~c change suggests that 
any possible Fm3m crystals are metastable with respect 
to the F43m structure. We should emphasize that 
Fm3m is the limiting case of Ff~3m, with crystaUite 
size reduced to intermolecular dimensions. 

(b) Short-range ordering in molecular vibrations 

The one-phonon diffuse scattering is modulated such 
that intensity is heaped up at the Brillouin zone centre 
[q = (000)]. A possible interpretation of this is in a 
local ordering to a structure resembling that of the 
P.[t2~c phase. This involves a softening of Ff~3m 
symmetry-breaking modes at q ~ {_000} so that 
alternate ab layers can assume their P42~c molecular 
orientations and relative spacings. The size of the local 
'clusters' can be estimated from Fv(~2)/Fv(O09 by 
regarding the process not as mode-softening in a 
displacive transition, but local ordering in an Ising 
transition in all coordinates. We estimate the cluster 
size at room temperature, 100 K above the transition, 
as about 1.6 molecules. If the ordering occurs in only 
some of the translations and librations of q ~ {000}, 
the corresponding cluster size is larger. The cluster size 
is only weakly dependent on temperature. At 218 K it 
has increased to 1.8 molecules. For such small cluster 
sizes it may be more useful to regard the correlation 
as between independent pairs of molecules separated 
by [~20]. This would cause a modulation of the diffuse 
scattering associated with a single molecule into sets of 
diffuse planes {hh0} h = 1, 2, ..., n. The large mosaic 
spread of our crystal precludes any more detailed 
analysis of our data, which would also require a more 
accurate theoretical treatment of the phonon scattering. 
An inelastic neutron scattering experiment will be able 
to distinguish more clearly between the Ising or dis- 
placive nature of the transition (Schneider & Stoll, 
1976) and determine which modes are involved. 

(c) Relation to theories o f  order-disorder transitions 

Previous theories of the phase transition in adaman- 
tane have assumed that the upper phase is orientation- 
ally disordered. Ising models then give a good 
agreement with a number of properties (Reynolds, 
1975a; Pertsin & Kitaigorodsky 1 9 7 6 ) -  notably the 
predicted transition temperature, and specific-heat data. 
This may not be coincidental, since a similar picture 
is emerging for 1,4-diazabicyclooctane (Reynolds, to be 
published). We can postulate a similar situation to that 
occurring in P-C6H2CI 2 (Reynolds, 1975b). We can 

trace a continuous pathway, in order parameters, from 
an initially ordered phase (P42~c) to a completely 
disordered phase (Fm3m) which reorders to an ordered 
phase (F43m) as the temperature is raised. Much of 
this pathway may not physically exist, because of 
lattice expansion. In particular, the Fm3m phase may 
exist only as a metastable intermediate - at any 
temperature above T c it may recorder, i.e. increase the 
crystallite size from 1 to ~ and expand its volume, 
to F43m" below Tc it may reorder and contract to 
P~2~c. However, the calculated transitional quantities 
P42~c .--,'Fm3m' may resemble those P42~c ~-,F43m, 
providing that those for 'Fm3m'---,Ff~3m are small. 
This situation is known to be so for the possibly 
analogous phases of CCI 4 (Morrison & Richards, 
1976). The increase in disorder (whether displacive, 
Ising or intermediate), as we approach T~ from either 
direction may well mimic other data (such as specific 
heats) calculated on the basis of an order-disorder 
transition, provided that the energy quantities involved 
are similar. In particular the specific heat of adaman- 
tane above T C includes a component that a clustering 
of molecular 0-90  ° orientations in a disordered lattice 
will explain. However, the data will fit equally well 
any other Ising-like process - such as the translational- 
librational ordering we have postulated in the F43m 
phase. 
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